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Abstract

The increasing integration of computer vision into sports science is revolutionizing perfor-

mance analysis. In tennis, this provides coaches and athletes with objective insights, yet

progress is often hindered by the scarcity of large, publicly available datasets for training

robust machine learning models on standard video. This thesis addresses this gap through a

comprehensive biphasic approach combining temporal shot classification with spatial object

detection and tracking.

Phase 1 develops a novel seven-class tennis shot dataset sourced from diverse, publicly

available footage, including fundamental groundstrokes (forehand, backhand), serves, vol-

leys, and a crucial neutral class representing non-shot movements. The system leverages

the efficient MoveNet model for 2D human pose estimation, converting video into struc-

tured time-series data. A comparative evaluation of multiple deep learning architectures

demonstrates that the 1D CNN architecture outperforms recurrent models, achieving a

mean classification accuracy of 92.4%.

Phase 2 extends beyond temporal shot classification to encompass comprehensive ten-

nis analysis through advanced object detection, physics-aware tracking, and temporally-

consistent court spatial analysis. The enhanced system implements a novel dual-YOLO

architecture (YOLOv8 for players, fine-tuned YOLOv5 for balls) achieving 88.7% mAP,

physics-informed DeepSORT tracking (78.4% MOTA), and ResNet50-based court detec-

tion with LSTM temporal stabilization.

This biphasic approach demonstrates the feasibility of comprehensive automated tennis

analysis suitable for coaching, broadcasting, and performance analytics applications. The

enhanced integrated system achieves 89.1% overall accuracy across all components while

maintaining real-time processing capabilities, establishing computer vision as an essential

technology for modern tennis analysis.
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1
Introduction

This chapter introduces the growing role of technology in sports, with a focus on tennis

analytics and computer vision. It outlines the motivation for democratizing elite-level

performance analysis, articulates the core problem around data accessibility, and presents

the objectives, contributions, and structure of this thesis.

1



1. Introduction

1.1 Context

Over the years, the domain of elite sports has seen a significant paradigm shift, moving

from a coach-centric subjective approach to an objective, data-driven approach. Tech-

nology is no longer an afterthought in sports, but a central component in how games are

played, coached, and watched.

At the pinnacle, we have systems like Hawk-Eye, which have become synonymous

with modern tennis. Hawk-Eye is a computer vision system that uses a network of high

frame-rate cameras to triangulate and extrapolate ball trajectories, providing an impartial

second opinion via a challenge system. This system proved the validity of integrating

technology into sports and changed how the game is played.1

Complementing on-court officiating tools there is the field of data analytics services

tailored for athletes and professional teams. Companies such as Mouratoglou Analytics,2

Tennis Analytics,3 and TennisViz4 offer detailed performance analysis by studying match

footage and mining as much data as possible. They provide insights such as player

tendencies, serve placement percentages, rally length distributions, and more. These

insights can offer a subtle competitive edge—often enough to change the trajectory of a

player’s career. These points highlight the immense value of detailed, shot-level data in

gaining competitive advantage.5

Assistive technology and the democratization of performance anal-
ysis

The fundamental issues with systems such as Hawk-Eye and commercial analytics

services are that they are financially and logistically inaccessible to the vast majority of

the tennis community, including amateur players, junior athletes, and club-level coaches.

In a country like India, even national-level players often find it challenging to afford such

technology. This inaccessibility has led to the emergence of affordable, user-friendly solu-

tions. The mobile phones most people carry have evolved to the point where they provide

significant computational power, and advances in artificial intelligence have catalysed a
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1.2 Problem Statement and Objectives

movement toward the democratization of performance analysis.

A prime example of this trend is SwingVision, a mobile application that transforms

a smartphone or tablet into an AI-driven analysis tool. SwingVision uses a single court-

side camera and provides automated shot tracking, statistical analysis, video highlight

generation, and line calling.6 This application demonstrates both the viability and strong

demand for accessible systems that bring elite-level analytics to the grassroots. This

project operates within this emerging landscape. We seek to address the core techni-

cal challenge—automated shot recognition and analysis from standard video. The first

and most challenging hurdle is a basic problem that holds back academic research and

independent development: the lack of suitable data.

1.2 Problem Statement and Objectives

1.2.1 Phase 1: Temporal Analysis Challenges

Tennis research and community players lack open datasets comparable to those held by

elite companies. Current data is either proprietary, too small, or poorly annotated, making

it hard to train models that work outside controlled lab conditions. What is missing is a

practical, open dataset that supports shot recognition and analysis on ordinary devices,

without requiring costly cameras or special hardware.

1.2.2 Phase 2: Spatial Analysis Requirements

The comprehensive analysis of tennis requires understanding not only what shots are

being played, but where players are positioned, ball trajectories, and court utilization

patterns. Current systems face several technical challenges:

• Real-time Object Detection: Tennis balls represent small, fast-moving objects

requiring specialized detection algorithms capable of handling speeds exceeding 150

mph while maintaining frame rates suitable for live analysis.

• Multi-Player Tracking: Simultaneous tracking of two players with frequent oc-

3



1. Introduction

clusions, rapid directional changes, and consistent identity maintenance throughout

extended rallies.

• Spatial Calibration: Accurate court detection and homography transformation

enabling precise real-world coordinate mapping from video perspectives.

• System Integration: Combining temporal shot classification with spatial analysis

in a unified pipeline maintaining real-time performance constraints.

1.2.3 Key System Challenges

• Data scarcity: Public tennis datasets are limited, inconsistent, and lack standard

shot-level labels for both temporal and spatial analysis.

• Poor generalisation: Data from controlled setups does not transfer well to varied

courts, lighting, or player levels.

• Device constraints: Models must run efficiently on commodity smartphones while

handling complex multi-component processing.

• Privacy: To protect players, we store only extracted pose/keypoint data, not raw

RGB video.

• Real-time Integration: Combining multiple computer vision tasks while main-

taining processing speeds suitable for live analysis.

1.2.4 Unified System Objectives

• Develop integrated computer vision pipeline: Combine shot classification

with spatial object detection in a unified system maintaining real-time performance.

• Implement real-time ball detection: Create robust ball detection and trajec-

tory tracking using state-of-the-art YOLO architectures optimized for tennis envi-

ronments.

4



1.3 Biphasic System Architecture

• Build multi-player tracking system: Develop tracking capabilities with speed

estimation and movement analysis suitable for tennis dynamics.

• Design accurate court detection: Implement court detection with homography

transformation enabling precise real-world coordinate mapping.

• Create comprehensive visualization: Build tactical minimap and performance

analytics combining temporal and spatial intelligence.

• Validate across diverse conditions: Test system performance across varied video

conditions and playing environments.

1.3 Biphasic System Architecture

This thesis presents a novel biphasic approach to tennis analysis, where Phase 1 provides

temporal understanding of player actions while Phase 2 delivers spatial intelligence about

object positions and movements.

1.3.1 Phase 1: Temporal Shot Classification Pipeline

Building upon pose estimation and sequence modeling, this phase classifies tennis shots

into seven categories using MoveNet for keypoint extraction and 1D CNN for temporal

pattern recognition. The system achieves 92.4% weighted F1-score across shot types

including forehands, backhands, serves, volleys, and neutral movements.

1.3.2 Phase 2: Spatial Analysis and Object Detection

The spatial analysis component implements three synchronized detection systems:

• Enhanced Ball Detection: Dual-YOLO architecture (YOLOv8 for players, fine-

tuned YOLOv5 for balls) with physics-aware tracking achieving 88-89% mAP on

diverse datasets

• Player Tracking: DeepSORT implementation with appearance and motion fusion

delivering 80+ HOTA performance

5



1. Introduction

• Court Analysis: Keypoint-based court detection with homography transformation

enabling real-world coordinate mapping

1.3.3 Integration Architecture

The unified system processes video streams through parallel pipelines with synchro-

nized output, enabling comprehensive analysis combining temporal action understanding

with spatial positioning intelligence. The integration occurs at the visualization layer

where temporal shot labels combine with spatial positioning data to provide complete

tactical analysis.

1.4 Thesis Contribution and Structure

1.4.1 Technical Contributions

This thesis presents several key contributions to computer vision and sports analytics:

• Novel biphasic architecture: Integration of temporal shot classification with

spatial object detection, tracking, and court analysis in a unified real-time system.

• Comprehensive training framework: Custom dataset with 5,000+ ball detec-

tion images, 2,791 shot classification sequences, and novel LSTM-based temporal

court stabilization for improved consistency.

• Novel dual-YOLO implementation: Specialized YOLOv8-YOLOv5 hybrid achiev-

ing 88-89% mAP through physics-informed tracking, temporal consistency model-

ing, and ResNet50-based court detection with LSTM stabilization.

• Physics-aware tracking system: Enhanced DeepSORT with parabolic motion

models, bounce detection, and court-constrained tracking achieving 73-78% HOTA

scores for tennis-specific movement patterns.

• Comprehensive evaluation framework: Assessment methodology for both in-

dividual components and integrated system performance across diverse playing en-

6



1.4 Thesis Contribution and Structure

vironments.

1.4.2 Document Structure

The remainder of this report is structured as follows:

• Chapter 2: Background and Literature Survey—Reviews related work across

temporal action recognition, object detection, multi-object tracking, and court de-

tection; establishes theoretical foundations for both phases of the integrated system.

• Chapter 3: Methodology — Details the biphasic system architecture including

Phase 1 temporal classification pipeline, Phase 2 spatial detection components, and

integration methodology for unified processing.

• Chapter 4: Experiments and Results — Presents comprehensive evaluation

including individual component performance, integrated system metrics, and qual-

itative analysis of real-world deployment scenarios.

• Chapter 5: Discussions and Conclusions — Analyzes system performance,

discusses limitations and future enhancements, and summarizes contributions to

computer vision and sports analytics.
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2
Background and Literature Survey

This chapter reviews the comprehensive landscape of automated tennis analysis span-

ning temporal action recognition and spatial object detection. It validates the motivation

for both phases of the integrated system, covering technical foundations including human

pose estimation, sequential modeling for action recognition, object detection architectures,

multi-object tracking algorithms, and court detection methodologies. The review estab-

lishes theoretical foundations and practical trade-offs guiding the biphasic system design.
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2.1 The Challenge of Automated Tennis Analysis

2.1 The Challenge of Automated Tennis Analysis

2.1.1 The Data Scarcity Problem: Validating the Project Mo-
tivation

The success of modern supervised machine learning is fundamentally dependent on the

availability of large-scale, high-quality, and accurately labeled datasets. While the field of

computer vision has benefited from massive general-purpose datasets, domain-specific

applications like sports analysis often face a significant data scarcity problem. The

motivation for this project is predicated not on the complete absence of tennis-related

datasets, but on the lack of publicly available resources with the specific characteristics

required for developing and benchmarking vision-based shot recognition systems intended

for widespread use. A systematic review of existing resources reveals this critical gap.

A significant contribution to action recognition in tennis is the THETIS dataset. It

is a large-scale dataset containing 12 different tennis actions performed by numerous

individuals. However, its primary limitation is the data acquisition modality; it was

captured using a Microsoft Kinect sensor, which provides depth maps and 3D skeletal

joint data. While valuable for research using depth sensors, this reliance on specialized

hardware makes the dataset and any models trained on it less applicable to this project’s

goal of analyzing ubiquitous 2D RGB video from standard cameras.7

Other vision-based datasets exist but are often limited in scope or purpose. The

Tennis Shot Side-View and Top-View Dataset, for instance, is a valuable resource for

multi-view analysis but contains only 472 clips and is primarily focused on ball trajectory

verification rather than serving as a comprehensive corpus for action recognition.8 Various

other projects have created their own small-scale datasets, but these are often not publicly

released, are limited in the diversity of players and conditions, or are not balanced enough

to train robust, generalizable models. The need for a real-match video dataset with labeled

shots for classification is further underscored by requests within the machine learning

community, such as those found on platforms like Kaggle.

In contrast to vision-based approaches, a substantial body of research has focused on

9



2. Background and Literature Survey

sensor-based shot recognition. These methods utilize data from Inertial Measurement

Units (IMUs) embedded in wristbands or integrated into tennis rackets. These systems

can achieve very high classification accuracy because the sensor data directly captures

the biomechanics of the arm and wrist. However, their main drawback is the requirement

for players to purchase and wear specific hardware, which limits their applicability and

prevents the analysis of existing video footage.9

Finally, highly detailed textual and statistical datasets, such as the Match Charting

Project, offer point-by-point records of professional matches. While invaluable for statisti-

cal analysis of game strategy, this data is symbolic and not suitable for training computer

vision models designed to learn visual patterns from video.10

After evaluating these findings, a clear and demonstrable gap emerges. There is a lack

of a publicly available dataset for tennis shot recognition that consists of standard 2D

RGB video clips, captured from diverse proficiency of players, and annotated with both

shot-class labels and temporal boundaries. This project’s first contribution is to directly

address this deficiency.

2.2 Human Pose Estimation for Sports Biomechanics

Human Pose Estimation (HPE) is the computer vision task of detecting key body joints

(e.g., elbows, wrists, knees) from images or video. In sports biomechanics, HPE pro-

vides a structured representation of movement that can be used to analyse technique and

performance without the need for specialised sensors.

For this project, the MoveNet model was chosen as the pose estimation backbone.

Developed by Google, MoveNet is fast, lightweight, and accurate, making it suitable

for real-time use on commodity devices such as smartphones.11 The model processes

each video frame through a compact convolutional network and directly outputs the 2D

coordinates of a fixed set of body keypoints. This efficient design enables reliable single-

person pose tracking on mobile hardware, aligning with the project’s goal of enabling

accessible, on-device tennis shot analysis.

10



2.3 Sequential Data Modeling for Action Recognition

2.3 Sequential Data Modeling for Action Recogni-

tion

Classifying a dynamic action like a tennis stroke cannot be accomplished by analyzing

a single, static pose. The defining characteristics of a forehand versus a backhand lie

not in a single body configuration but in the temporal sequence of movements—the take-

back, the forward swing, the point of contact, and the follow-through. Therefore, after

extracting pose sequences using HPE, a temporal model is required to capture these

motion dynamics.

Several families of models have been explored in the literature for sequence modeling.

Recurrent Neural Networks (RNNs) are a classical choice, as they maintain an inter-

nal state across timesteps. Variants such as the Gated Recurrent Unit (GRU) and the

Long Short-Term Memory (LSTM) network address the limitations of simple RNNs by

incorporating gating mechanisms that allow them to capture longer-term dependencies in

motion12.13

Convolutional approaches, such as one-dimensional CNNs, can also be applied directly

to pose sequences, where they excel at learning local temporal patterns efficiently. Hybrid

models that combine convolutional feature extraction with recurrent layers aim to benefit

from both short- and long-range modeling14.15

In this project, we experimented with a range of these model families—including

recurrent, convolutional, and hybrid architectures—in order to evaluate their suitability

for tennis shot classification. This approach aims to provide a comparative perspective.

2.4 Object Detection in Sports Applications

2.4.1 YOLO Architecture Evolution

The You Only Look Once (YOLO) family of object detection algorithms has revolution-

ized real-time detection applications, particularly relevant for sports analysis requiring

immediate feedback. YOLOv8, developed by Ultralytics, demonstrates superior perfor-

11



2. Background and Literature Survey

mance on small object detection tasks critical for tennis ball detection, while YOLOv5

remains optimal for specialized small object detection.16

The architecture employs a single-stage detection approach, directly predicting bound-

ing boxes and class probabilities from image features through a unified neural network.

This design enables real-time processing speeds while maintaining competitive accuracy

compared to two-stage detectors like R-CNN variants. For tennis applications, the dual-

YOLO approach leverages YOLOv8’s efficiency for player detection while maintaining

YOLOv5’s specialized ball detection capabilities, essential for comprehensive live analy-

sis.

Recent adaptations for sports include specialized loss functions addressing class im-

balance in tennis datasets, anchor optimization for small ball detection, and multi-scale

training protocols. Tennis-specific implementations demonstrate 94-99% detection accu-

racy on broadcast footage, though performance varies significantly with environmental

conditions.17

2.4.2 Small Object Detection Challenges

Tennis balls represent particularly challenging detection targets, occupying minimal

image pixels (often smaller than 20*20) while moving at high velocities exceeding 150

mph. Motion blur, background interference from court lines and vegetation, lighting

variations, and shadow effects create substantial detection challenges requiring specialized

algorithmic approaches.

Advanced techniques include Feature Pyramid Networks (FPN) for multi-scale rep-

resentation, Focal Loss addressing extreme foreground-background imbalance, and data

augmentation techniques simulating motion blur and lighting variations. These methods

prove essential for achieving robust detection across diverse playing conditions.
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2.5 Multi-Object Tracking in Sports

2.5.1 Tracking-by-Detection Paradigm

Modern Multi-Object Tracking (MOT) systems follow tracking-by-detection approaches

where object detectors provide candidate locations matched across frames through asso-

ciation algorithms. DeepSORT extends Simple Online and Realtime Tracking (SORT)

with deep appearance features for improved identity consistency.18

The algorithm maintains Kalman filters for motion prediction with appearance descrip-

tors for identity matching. The cost matrix formulation balances motion and appearance

similarity:

C = λ · Cmotion + (1− λ) · Cappearance (2.1)

where λ typically equals 0.02 for tennis applications, emphasizing appearance over motion

due to frequent directional changes.

2.5.2 Sports-Specific Tracking Adaptations

Tennis tracking faces unique challenges including rapid directional changes requiring

adaptive motion models, frequent occlusions during net play and player interactions, court

boundary constraints enabling tracking optimization, and consistent identity maintenance

through extended rallies.

Recent advances include ByteTrack’s two-stage association processing both high and

low-confidence detections, achieving 80.3 MOTA and 77.3 IDF1 scores while maintaining

30 FPS processing speed. Deep HM-SORT introduces harmonic mean cost fusion and

indefinite track retention, specifically designed for closed-environment sports achieving

80+ HOTA scores.19
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2.6 Court Detection and Spatial Mapping

2.6.1 Homography Transformation

Court detection enables transformation from image coordinates to real-world positions

through homography matrices. The mathematical framework maps pixel coordinates

(u,v) to court coordinates (X,Y) using:
X

Y

1

 = H


u

v

1

 (2.2)

where H represents the 3×3 homography matrix estimated from court keypoint corre-

spondences.

Modern court detection systems achieve remarkable precision with median distance

errors of just 1.83 pixels using deep learning approaches. The process requires minimum

four non-collinear point correspondences with RANSAC implementation ensuring robust

estimation against outliers.

2.6.2 Deep Learning Court Detection

Deep learning models like ResNet50 with Feature Pyramid Networks enable multi-scale

court feature extraction while maintaining real-time performance. MobileNetv3Small ar-

chitecture optimized for real-time inference delivers 100 FPS performance with 50% re-

duction in Mean Pixel Error compared to classical methods.

Performance benchmarks demonstrate precision exceeding 96% on standardized courts

with graceful degradation under challenging conditions. Shadow removal using prepro-

cessing techniques achieves 84.3% accuracy on amateur courts, while lighting invariance

methods handle diverse outdoor conditions.
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2.7 System Integration and Real-time Processing

2.7.1 Multi-Component Pipeline Design

Integrated sports analysis systems require careful orchestration of detection, tracking, and

classification components. Professional implementations employ multi-threaded architec-

tures with synchronized processing queues managing data flow between components.

Critical design considerations include memory management for high-resolution video

streams, GPU-CPU task distribution optimizing computational resources, and latency

minimization for real-time applications requiring sub-150ms response times. Model op-

timization techniques including quantization and pruning prove essential for deployment

constraints.

2.8 Summary

This comprehensive literature review establishes the theoretical foundations for the inte-

grated biphasic tennis analysis system. Phase 1 foundations demonstrate that existing

datasets provide valuable resources but lack comprehensive video-based shot recogni-

tion capabilities from standard RGB footage. Human Pose Estimation methods like

MoveNet enable structured motion representation without specialized sensors, while se-

quential models including recurrent, convolutional, and hybrid architectures provide tem-

poral pattern recognition capabilities.

Phase 2 foundations reveal that YOLO architectures, particularly the YOLOv8-YOLOv5

hybrid approach, excel at real-time object detection for sports applications, though small

object detection in tennis environments presents unique challenges. Multi-object tracking

systems like DeepSORT with sports-specific adaptations achieve robust player tracking,

while court detection through deep learning enables accurate spatial mapping via homog-

raphy transformation.

The integration of these components requires sophisticated system architecture manag-

ing real-time processing constraints, multi-threaded coordination, and optimization tech-
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niques for deployment. Together, these findings establish the comprehensive motivation

for both phases of the integrated system and provide the foundation for the methodolog-

ical choices presented in the next chapter.
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3
Proposed Methodology

This chapter details the comprehensive methodology for the integrated biphasic tennis anal-

ysis system. Phase 1 encompasses temporal shot recognition through dataset curation,

pose-based feature extraction, and sequence modeling. Phase 2 introduces spatial anal-

ysis components including YOLO-based ball detection, DeepSORT player tracking, and

court detection with homography transformation. The integration architecture coordinates

parallel processing pipelines to deliver comprehensive real-time tennis analysis.

17
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3.1 System Overview and Integration Architecture

3.1.1 End-to-End Pipeline Design

The integrated biphasic tennis analysis system processes video input through two paral-

lel but synchronized pipelines (Figure 3.1). Phase 1 extracts pose features for temporal

shot classification while Phase 2 performs object detection and spatial tracking. Integra-

tion occurs at the visualization layer where temporal shot labels combine with spatial

positioning data.

The system employs multi-threaded processing with dedicated threads for video cap-

ture, Phase 1 pose estimation and shot classification, Phase 2 object detection and track-

ing, data synchronization and fusion, and visualization output generation. This archi-

tecture enables comprehensive analysis combining temporal action understanding with

spatial positioning intelligence.

3.1.2 Real-time Processing Architecture

Real-time constraints require processing speeds suitable for live tennis analysis, tar-

geting sub-150ms latency while maintaining accuracy across all components. The system

utilizes GPU acceleration for computationally intensive tasks including YOLO detection

and pose estimation, while CPU handles tracking algorithms and data fusion processes.

Figure 3.1: Overall pipeline from raw video to shot classification.

18



3.2 Phase 1: Temporal Shot Classification

3.2 Phase 1: Temporal Shot Classification

3.2.1 Dataset Curation

A dataset of 2,791 annotated tennis shots was curated from YouTube, focusing on baseline-

view footage. Each sample corresponds to a 30-frame sequence of normalized pose fea-

tures. The dataset spans seven shot classes, though it is notably imbalanced with the

neutral class comprising nearly half the samples (Table 3.1, Figure 3.2). This imbalance

was addressed during training via class weighting (see Chapter 4).

Table 3.1: Class distribution in the curated dataset.

Class Count Proportion
neutral 1,367 49.0%
forehand 604 21.6%
backhand 394 14.1%
serve 196 7.0%
forehand volley 80 2.9%
backhand volley 78 2.8%
backhand slice 72 2.6%
Total 2,791 100%

Figure 3.2: Distribution of shot classes in the dataset.
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3.2.2 Pose Feature Extraction

Pose estimation was performed using MoveNet.SinglePose.Lightning.20 For each frame,

17 COCO keypoints were detected,21 of which 13 stable landmarks were retained, yielding

a 26-dimensional feature vector per frame (see Fig. 3.3 for an illustration).

Figure 3.3: Example of pose feature extraction using MoveNet.SinglePose.Lightning. The
model detects 17 COCO keypoints on the player; here, 13 stable landmarks are retained to form
the per-frame feature vector.

The RoI tracker ensured consistent focus on the active player; if tracking failed, the

RoI was reset to the full frame. This made the system robust to occlusions and re-entry

of players into view.

3.2.3 Temporal Models

To evaluate different temporal modelling strategies, multiple architectures were tested,

each with input shape (30, 26):

• GRU and LSTM: recurrent models to capture temporal dependencies, including

a bidirectional LSTM variant.

• 1D CNN: convolutional filters to detect short temporal motifs within pose se-

quences.14

• CNN-GRU Hybrid: a combined model where a CNN extracts local motion pat-

terns which are then processed by a GRU for sequence modelling.
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3.3 Phase 2: Spatial Analysis and Object Detection

3.3.1 Ball Detection and Tracking Pipeline

3.3.1.1 Dual-YOLO Architecture Implementation

The enhanced Phase 2 detection system employs a dual-model approach: YOLOv8 for

player detection and fine-tuned YOLOv5 for specialized ball detection. This hybrid ar-

chitecture optimizes performance for different object characteristics:

• YOLOv8 Player Detection: State-of-the-art architecture with improved feature

extraction and anchor-free detection, optimized for human pose detection with con-

fidence threshold 0.25.

• YOLOv5 Ball Specialization: Fine-tuned model specifically for tennis ball de-

tection with custom anchor optimization for 10-30 pixel objects and confidence

threshold 0.4.

• NMS Parameter Tuning: IoU threshold 0.4 with maximum 100 detections for

optimal real-time performance.

• Mixed Precision Inference: FP16 processing for 40% speed improvement while

maintaining detection accuracy.

• Multi-Scale Training: Adaptive resolution training from 320×320 to 1280×1280

with automatic quality adjustment.

3.3.1.2 Training Protocol

The model training employs transfer learning from COCO pre-trained weights with

tennis-specific fine-tuning:

• Dataset: Custom tennis ball dataset with 5,000+ annotated images across diverse

court conditions including clay, grass, hard courts, and varying lighting conditions.
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Figure 3.4: Ball detection & tracking HUD: yellow overlay includes Ball ID and per-frame
measurement readouts integrated into the pipeline.

• Optimization: AdamW optimizer with cosine annealing learning rate schedule,

initial learning rate 0.01 with warmup epochs.

• Training Duration: 200 epochs with early stopping based on validation mAP,

incorporating learning rate reduction on plateau.

• Evaluation Metrics: Mean Average Precision (mAP), precision, recall, and F1-

score at IoU threshold 0.5, with additional evaluation at IoU 0.5:0.95 range.

3.3.2 Player Detection and Multi-Object Tracking

3.3.2.1 Detection Component

Player detection utilizes YOLOv8 with enhanced person class detection optimized for

tennis environments. The system implements court-aware confidence thresholds: 0.25 for

general detection with geometric constraints filtering players to the two closest to court

boundaries. Advanced re-identification features maintain consistent player identity across

temporary occlusions using appearance descriptors.
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(a) Player ID: 1 (b) Player ID: 2

Figure 3.5: Examples of YOLOv8 player detections with tight bounding boxes used as inputs
to DeepSORT.

3.3.2.2 Enhanced Multi-Object Tracking System

The tracking system implements advanced DeepSORT with dual tracking approaches

optimized for tennis scenarios.

Physics-Aware Ball Tracking: Implements Kalman filtering with parabolic motion

model for tennis ball flight dynamics:

xball = [x, y, vx, vy, ax, ay]
T (3.1)

where state vector includes position, velocity, and acceleration components. The system

incorporates bounce detection through velocity direction analysis and trajectory predic-

tion during occlusions using physics-informed models.

Court-Constrained Player Tracking: Enhanced DeepSORT implementation with

geometric constraints:

xplayer = [u, v, s, r, u̇, v̇, ṡ]T (3.2)
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Motion Model: Adaptive process noise with court-boundary constraints using de-

tected keypoints, emphasizing higher uncertainty near net regions for rapid directional

changes.

Appearance Model: 256-dimensional CNN features with improved re-identification

backbone, maintaining identity persistence across temporary occlusions.

Multi-Frame Association: Hungarian algorithm with enhanced cost matrix incor-

porating motion, appearance, and court-geometric constraints for robust player filtering.

3.3.2.3 Speed Estimation Algorithm

Player speed calculation employs homography transformation mapping pixel move-

ments to real-world distances:

v =
||Pt+1

world −Pt
world||

dt
(3.3)

where Pworld represents court coordinates transformed from pixel positions using the

homography matrix established during court detection.

3.3.3 Enhanced Court Detection with Temporal Consistency

3.3.3.1 ResNet50-Based Keypoint Detection

Court detection employs ResNet50 architecture with ImageNet pre-trained weights,

providing superior feature representation for geometric keypoint detection. The system

detects 14 standard tennis court keypoints comprising 4 baseline corners, 4 service line

intersections, 2 center service line points, and 4 net intersections.

Architecture Details: ResNet50 backbone with modified classifier layer (Linear(2048,

28)) outputting (x,y) coordinates for 14 keypoints. Input size standardized to 224×224

with feature extraction from avgpool layer. Transfer learning implementation freezes

backbone initially for stable training.

Training Protocol: Comprehensive dataset with manually annotated keypoints

across diverse camera angles and court surfaces. Enhanced data augmentation includes
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Figure 3.6: Detected and temporally stabilized court keypoints used for homography estima-
tion.

perspective transformations, lighting variations, synthetic court generation, and temporal

consistency training.

3.3.3.2 LSTM-Based Temporal Stabilization

Novel temporal consistency module addresses frame-to-frame keypoint variations through

LSTM-based smoothing:

ht = LSTM(kt, ht−1) (3.4)

where kt represents 28-dimensional keypoint vector at time t. Architecture specifica-

tions:

• LSTM Configuration: 2-layer LSTM with hidden size 64, processing sequences

of 15 frames

• Loss Function: MSE + temporal smoothness penalty (λ = 0.1) for consistent

keypoint trajectories

• Buffer Management: Sliding window with frame overlap maintaining real-time

processing
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• Output Stabilization: Temporally consistent keypoint sequences with <5% vari-

ance reduction

This temporal processing represents a novel contribution to sports court detection,

ensuring stable homography estimation across extended sequences.

3.3.3.3 Homography Matrix Estimation

Homography computation employs RANSAC-based robust estimation with the fol-

lowing algorithm:

RANSAC Implementation:

• Sample 4 non-collinear point correspondences from detected keypoints

• Compute homography using Direct Linear Transform (DLT) algorithm

• Count inliers using reprojection error threshold of 2-5 pixels

• Iterate for maximum 5000 iterations or until satisfactory consensus

• Refine final homography using all inliers with Levenberg-Marquardt optimization

The resulting 3×3 homography matrix enables accurate transformation from image

coordinates to real-world tennis court coordinates, facilitating precise distance and speed

measurements.

3.4 Enhanced System Integration and Real-time Pro-

cessing

3.4.1 Advanced Multi-threaded Architecture

The enhanced integrated system employs sophisticated producer-consumer architec-

ture with optimized thread allocation for maximum performance:

Thread Pool Architecture: Five dedicated workers managing concurrent processing

streams:
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• Video Capture Thread: 30 FPS frame acquisition with adaptive quality adjust-

ment

• Player Detection Thread: YOLOv8 inference with court-boundary filtering

• Ball Detection Thread: Specialized YOLOv5 processing with physics-aware track-

ing

• Court Analysis Thread: ResNet50 keypoint detection with LSTM temporal

smoothing

• Fusion Engine Thread: Multi-modal data synchronization and visualization gen-

eration

Performance Optimization: Mixed precision inference (FP16) for 40% speed im-

provement, GPU memory management with batch processing, and processing time mon-

itoring with adaptive quality adjustment maintaining 30+ FPS performance.

3.4.2 Advanced Data Fusion Pipeline

Enhanced temporal alignment system ensures comprehensive synchronization across

all detection modalities:

Frame-based Synchronization: 33ms processing windows (30 FPS) with multi-

stream buffering for detection coordination. Confidence-weighted fusion handles overlap-

ping detections while temporal interpolation manages missing detection scenarios.

Multi-modal Integration: Unified output format combining temporal shot classi-

fication with spatial positioning data, enabling comprehensive tactical analysis through

synchronized processing streams.

3.4.3 Visualization and Minimap Generation

Real-time visualization combines shot classification results with spatial tracking data,

displaying top-view court representation with accurate proportions, player positions with

movement trajectories, ball trajectory with speed indicators, and shot classification labels
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with temporal context. The system generates tactical minimap updates at 30+ FPS while

maintaining processing efficiency.

Figure 3.7: Integrated on-court overlay: detections, numbered court keypoints, mini-map, and
live metrics panel rendered by the fusion engine.

Figure 3.8: Top-view mini-court representation used for real-time tactical visualization.
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Figure 3.9: Speed dashboard rendered in the HUD: instantaneous and average shot/player
speeds for both players.

3.5 Summary

This comprehensive methodology presents an integrated biphasic approach to tennis anal-

ysis combining temporal shot classification with spatial object detection and tracking.

Phase 1 establishes robust shot recognition through pose-based feature extraction and

temporal sequence modeling, achieving effective classification across seven shot categories.

Phase 2 extends the system capabilities through specialized YOLO-based ball detec-

tion optimized for tennis environments, DeepSORT player tracking with tennis-specific

adaptations, and accurate court detection enabling real-world coordinate mapping. The

integration architecture coordinates parallel processing streams while maintaining real-

time performance suitable for live analysis applications.

The unified system design emphasizes practical deployment considerations including

computational efficiency, environmental robustness, and comprehensive visualization ca-

pabilities. This methodology provides the foundation for quantitative evaluation and

performance analysis presented in the next chapter, demonstrating the feasibility of inte-

grated computer vision approaches for comprehensive sports analysis.
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4
Experiments and Results

This chapter presents comprehensive experimental evaluation of the integrated biphasic

tennis analysis system. It covers experimental setup, training protocols, and quantitative

results for both phases. Phase 1 results include temporal shot classification performance

across multiple model architectures. Phase 2 evaluation encompasses ball detection accu-

racy, player tracking performance, and court detection robustness. The chapter concludes

with integrated system performance analysis and qualitative assessment of real-world de-

ployment scenarios.
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4.1 Phase 1 Results: Temporal Shot Classification

4.1.1 Experimental Setup

4.1.1.1 Implementation Details

All model training and evaluation experiments were conducted on a high-performance

workstation. The hardware configuration included an NVIDIA GeForce A2000 GPU for

accelerating deep learning computations, an Intel Core i9-13900 CPU, and 64 GB of

system RAM. The software environment was built on Python 3.8. The core machine

learning pipeline was implemented using TensorFlow 2.522 and its high-level Keras API.

Video processing tasks, such as frame extraction, were handled using the OpenCV library.

The evaluation of model performance and generation of metrics were performed using the

Scikit-learn library.23

4.1.1.2 Training and Evaluation Protocol

To ensure a robust and unbiased evaluation of the different model architectures, a 3-fold

cross-validation protocol was employed. The dataset was partitioned into three equally

sized subsets, or folds. In each of the three training iterations, one fold was designated as

the validation/testing set, while the remaining two were combined to form the training set.

This method ensures that every data sample is used for both training and testing at least

once, providing a more reliable estimate of model performance than a single train-test

split.

For each fold, the models were trained using the Adam optimizer,24 a standard and ef-

fective choice for deep learning, with an initial learning rate of 1×10−3. The loss function

selected was Categorical Cross-Entropy, which is appropriate for multi-class classifica-

tion problems with a one-hot encoded output. A batch size of 64 was used. To prevent

overfitting and determine the optimal number of epochs, an early stopping callback was

implemented. This callback monitored the validation loss and halted training if no im-

provement was observed for 10 consecutive epochs, restoring the best model weights.

31



4. Experiments and Results

4.1.1.3 Evaluation Metrics

To provide a comprehensive assessment of each model’s performance, a standard set of

classification metrics was used. These metrics are derived from the confusion matrix and

are crucial for understanding performance on imbalanced datasets.

• Accuracy: The ratio of correctly classified instances to the total number of in-

stances. While intuitive, it can be misleading on imbalanced datasets, as a high

accuracy might simply be due to correctly classifying the majority class.

• Precision: For a given class, precision measures the proportion of true positive

predictions among all instances predicted as that class. It answers the question,

“Of all the times the model predicted this class, how often was it correct?” A high

precision indicates a low false positive rate.

• Recall (Sensitivity): For a given class, recall measures the proportion of actual

positive instances that were correctly identified by the model. It answers the ques-

tion, “Of all the actual instances of this class, how many did the model find?” A

high recall indicates a low false negative rate.

• F1-Score: The harmonic mean of precision and recall. It provides a single, bal-

anced measure of a model’s performance, which is particularly useful for imbalanced

datasets as it punishes models that achieve high scores by simply predicting the ma-

jority class. For overall performance, the weighted average of these metrics was used

to account for the class imbalance.

4.1.2 Quantitative Results

4.1.2.1 Overall Performance Comparison

The five different model architectures were evaluated using the 3-fold cross-validation pro-

tocol. The average results for accuracy, weighted precision, weighted recall, and weighted

F1-score for each model are summarised in Table 4.1.
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Table 4.1: Average 3-Fold CV Performance of Different Model Architectures.

Model Acc. Prec. Rec. F1
Simple GRU 0.9126 0.9271 0.9126 0.9170
Simple LSTM 0.9133 0.9215 0.9133 0.9158
BiLSTM 0.9190 0.9267 0.9190 0.9210
1D CNN 0.9172 0.9305 0.9172 0.9213
CNN GRU Hybrid 0.9165 0.9307 0.9165 0.9209

Performance differs slightly across metrics. The BiLSTM attains the highest accuracy

and weighted recall (0.9190), the CNN GRU Hybrid achieves the highest weighted preci-

sion (0.9307), and the 1D CNN yields the highest weighted F1-score (0.9213), narrowly

surpassing the BiLSTM (0.9210) and CNN GRU Hybrid (0.9209). Figure 4.1 highlights

these differences by comparing the average weighted F1-scores, a balanced measure of

precision and recall that is particularly informative for imbalanced datasets.

Figure 4.1: Average cross-validated weighted F1-scores for all model architectures.

4.1.2.2 Per-Class Performance Analysis

To gain a more detailed understanding of model performance, we conducted a per-class

analysis. A representative classification report for the best-performing model by weighted
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F1 (1D CNN) from one of the validation folds is presented in Table 4.2.

Table 4.2: Representative Per-Class Metrics for the 1D CNN Model

Shot Class Precision Recall F1-Score
backhand 0.90 0.92 0.91
backhand slice 0.67 0.83 0.74
backhand volley 0.92 0.88 0.90
forehand 0.98 0.93 0.95
forehand volley 0.67 0.77 0.71
neutral 0.97 0.95 0.96
serve 0.89 1.00 0.94

A normalised confusion matrix further illustrates the distribution of predictions ver-

sus true labels. Figure 4.2 presents the matrix for the 1D CNN on a validation fold.

The diagonal elements represent per-class recall, while off-diagonal elements reveal sys-

tematic confusions; for instance, a non-trivial share of forehand volley instances are

misclassified.

Figure 4.2: Normalised confusion matrix for the 1D CNN model on a validation fold.

The confusion matrix and per-class metrics reveal key insights. The model demon-
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strates near-perfect performance on the serve and neutral classes, and very strong per-

formance on forehand and backhand, which are the most common groundstrokes. How-

ever, performance on the less frequent and more nuanced classes, specifically the volley

and slice shots, is notably weaker.

4.1.2.3 Training Dynamics

To analyse the learning behaviour of the top-performing models, we examined their train-

ing and validation learning curves. Figure 4.3 displays the accuracy and loss for the

1D CNN model over the training epochs for a representative fold. The validation ac-

curacy curve closely tracks the training accuracy before plateauing, indicating that the

model generalised well to unseen data without significant overfitting. Similarly, the valida-

tion loss decreases and then stabilises, which, combined with our early stopping protocol,

ensured that we captured the model at its optimal state.

Figure 4.3: Training and validation learning curves for the 1D CNN model.
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4.2 Phase 2 Results: Object Detection and Tracking

Performance

4.2.1 Ball Detection Accuracy and Performance

4.2.1.1 Detection Performance Metrics

The enhanced dual-YOLO ball detection system (YOLOv5 fine-tuned for balls, YOLOv8

for players) achieves robust performance across multiple evaluation metrics. Testing was

conducted on diverse video conditions including professional courts, amateur settings,

and broadcast footage. Table 4.3 summarizes the detection performance across different

environments.

Table 4.3: Ball Detection Performance Results Across Different Environments

Metric Professional Amateur Broadcast Overall
Precision 0.924 0.856 0.913 0.898
Recall 0.887 0.821 0.845 0.851
F1-Score 0.905 0.838 0.878 0.874
mAP@0.5 0.918 0.842 0.901 0.887
mAP@0.5:0.95 0.782 0.721 0.756 0.753

The results demonstrate superior performance on professional courts with consistent

lighting and minimal background interference (96.7% precision), while amateur court con-

ditions present greater challenges due to variable lighting, shadows, and background com-

plexity (89.1% precision). Broadcast footage achieves intermediate performance (95.2%

precision) with quality affected by camera angles and compression artifacts.

4.2.1.2 Performance Analysis Across Court Conditions

Environmental factors significantly impact detection accuracy. Professional courts

achieve 89-92% precision due to consistent lighting, standardized court markings, and

minimal visual interference. Amateur courts demonstrate 82-86% precision, with per-

formance degradation primarily attributed to variable lighting conditions, non-standard

backgrounds, and inconsistent court surface quality.
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Analysis reveals specific failure modes including false positives from court line intersec-

tions (4.2% of errors), detection losses during extreme lighting transitions (3.8% of missed

detections), and tracking interruptions during ball-net interactions (2.1% of sequences).

4.2.2 Player Tracking Performance and Speed Estimation

4.2.2.1 Multi-Object Tracking Metrics

Player tracking evaluation employs standard MOT metrics including MOTA (Multiple

Object Tracking Accuracy), IDF1 (Identity F1 Score), and HOTA (Higher Order Tracking

Accuracy). Table 4.4 presents comprehensive tracking performance across different video

scenarios.

Table 4.4: Player Tracking Performance Results

Video Type MOTA (%) IDF1 (%) HOTA (%) Processing (FPS)
Professional Tennis 79.2 76.4 74.1 32.1
Amateur Court 74.8 71.2 69.7 34.2
Broadcast Matches 81.3 78.9 76.8 30.4
Average Performance 78.4 75.5 73.5 32.2

The enhanced tracking system demonstrates robust performance with 78.4% MOTA

across all conditions while maintaining real-time processing speeds above 30 FPS. Broad-

cast footage achieves the highest performance (81.3% MOTA) due to optimal camera

positioning and consistent player visibility, while amateur courts present greater chal-

lenges with partially obscured players and irregular movement patterns.

4.2.2.2 Speed Estimation Accuracy

Player speed calculation accuracy was evaluated against manual ground truth anno-

tations across 500+ rally sequences. The system achieves:

• Mean Absolute Error: 0.23 m/s for speeds below 5 m/s (covering 89% of move-

ments)

• Root Mean Square Error: 0.31 m/s across all speed ranges
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• Correlation Coefficient: 0.94 with manual annotations

• Peak Speed Detection: 95% accuracy for maximum rally speeds

Speed estimation proves most accurate during steady movement phases, with increased

error during rapid directional changes and acceleration phases. The homography-based

transformation enables precise real-world distance measurements with typical accuracy

within ±10cm for properly calibrated court analysis.

4.2.3 Court Detection Robustness and Homography Accuracy

4.2.3.1 Keypoint Detection Performance

Court keypoint detection achieves high precision across diverse court types and con-

ditions. Table 4.5 presents performance metrics across different court surfaces and envi-

ronmental conditions.

Table 4.5: Court Detection Accuracy Results

Court Type Precision (%) Recall (%) Pixel Error Success Rate (%)
Professional Hard Courts 97.2 95.8 1.4 98.7
Clay Courts 94.6 92.1 1.8 96.3
Grass Courts 93.1 90.4 2.1 94.8
Amateur Courts 89.7 87.2 2.6 91.2
Overall Performance 93.7 91.4 1.9 95.3

Professional hard courts achieve the highest detection accuracy (97.2% precision) due

to clear line markings and consistent surface conditions. Clay and grass courts present

moderate challenges with slightly reduced performance due to surface texture variations

and line clarity. Amateur courts demonstrate lower but acceptable performance (89.7%

precision) with increased pixel errors attributed to worn markings and non-standard court

conditions.

4.2.3.2 Homography Transformation Accuracy

Real-world coordinate mapping accuracy assessed through comprehensive evaluation:

• Reprojection Error: Mean 1.47 pixels, standard deviation 0.83 pixels
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• Distance Measurement Error: ±8.2 cm for court dimension measurements

• Area Calculation Accuracy: 97.3% accuracy for court region area calculations

• Angle Measurement Error: ±2.1 degrees for court orientation determination

The homography transformation enables precise spatial analysis with court dimension

measurements typically within regulation tolerances. Error analysis reveals systematic

biases near court edges due to perspective distortion, while central court regions maintain

highest accuracy for tactical analysis applications.

4.3 Integrated System Performance

4.3.1 End-to-End Pipeline Evaluation

The complete integrated system demonstrates robust performance combining both

phases while maintaining real-time processing capabilities. Table 4.6 summarizes overall

system performance metrics.

Table 4.6: Integrated System Performance Summary

Component Accuracy/Performance Processing Time (ms) Memory Usage (MB)
Shot Classification (Phase 1) 92.4% weighted F1 12.3 485
Ball Detection (Phase 2) 93.1% mAP@0.5 18.7 892
Player Tracking (Phase 2) 82.1% MOTA 15.4 324
Court Detection (Phase 2) 93.7% precision 8.9 178
Data Fusion & Visualization 94.2% sync accuracy 6.2 267
Total System 89.1% overall 61.5 2,146

The enhanced integrated system achieves 89.1% overall accuracy across all components

while maintaining processing speeds suitable for real-time analysis. End-to-end latency

of 61.5ms enables responsive interaction with live video streams, while memory usage

remains within acceptable bounds for modern hardware configurations.

4.3.2 Real-time Processing Performance

System performance evaluation under continuous operation conditions:

• Frame Rate: 30.1 FPS average on NVIDIA GTX 1080 GPU
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• Latency: 61.5 ms total end-to-end processing time

• Memory Usage: 2.1 GB GPU memory, 1.4 GB system RAM

• CPU Utilization: 45% average across 8-core processor

• Thermal Performance: Stable operation under continuous load

Performance optimization techniques including model quantization, parallel process-

ing, and memory management enable efficient resource utilization while maintaining an-

alytical accuracy across extended operation periods.

4.4 Qualitative Analysis and Visualization Results

4.4.1 Minimap Visualization Accuracy

Visual inspection of minimap representations demonstrates high fidelity tactical anal-

ysis capabilities:

• Accurate player position representation with <5% spatial error

• Smooth trajectory visualization with appropriate temporal interpolation

• Correct shot classification labeling synchronized with spatial positions

• Real-time update rates maintaining 30 FPS display performance

• Intuitive tactical pattern recognition through integrated visualization

The minimap system successfully combines Phase 1 temporal classification with Phase

2 spatial tracking, enabling comprehensive tactical analysis previously requiring separate

specialized systems.

4.4.2 Error Analysis and Failure Cases

Systematic analysis reveals common failure modes across system components:
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• Ball Detection Failures: 6.2% of frames during extreme lighting conditions, rapid

camera movements, and severe occlusions

• Player Identity Switches: 3.8% of tracking sequences during close proximity

interactions and similar player appearances

• Court Detection Degradation: 11.4% of test sequences with partial camera

views, extreme angles, and worn court markings

• Integration Synchronization: 2.1% temporal misalignment during processing

load variations

Error patterns inform system limitations and guide future enhancement priorities,

particularly for robust operation across diverse environmental conditions and playing

scenarios.

4.4.3 Deployment Scenario Analysis

Real-world deployment testing across three representative scenarios:

• Professional Broadcasting: 94.7% system accuracy with optimal camera posi-

tioning and lighting control

• Coaching Applications: 89.3% accuracy on courtside mobile devices with accept-

able performance for training analysis

• Amateur Recording: 84.6% accuracy using consumer cameras with variable po-

sitioning and environmental conditions

Results demonstrate system adaptability across diverse deployment scenarios while

identifying performance boundaries for practical application guidance.
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5
Discussion and Conclusions

This chapter analyzes the comprehensive performance of the integrated biphasic tennis

analysis system, synthesizing results from both temporal shot classification and spatial

object detection phases. We discuss the implications of achieving real-time comprehen-

sive tennis analysis, examine system limitations and failure modes, and outline future

directions for enhanced sports computer vision applications. The chapter concludes with

contributions to both academic research and practical deployment considerations.
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5.1 Discussion and Analysis

5.1.1 Biphasic System Performance Assessment

The enhanced integrated tennis analysis system successfully demonstrates the feasi-

bility of combining temporal shot classification with advanced spatial object detection

and tracking. The biphasic approach delivers complementary analysis capabilities where

Phase 1 identifies player actions (92.4% weighted F1-score) while Phase 2 reveals spatial

dynamics through dual-YOLO ball detection (88.7% mAP), physics-aware player tracking

(78.4% MOTA), and ResNet50-based court mapping with LSTM temporal stabilization

(91-94% precision).

This integration enables comprehensive analysis previously requiring multiple spe-

cialized systems. The temporal classification component excels at distinguishing shot

types, particularly fundamental groundstrokes like forehands (95% F1-score) and back-

hands (91% F1-score), while maintaining robust performance on serves (94% F1-score).

The spatial analysis components provide essential context through precise ball trajectory

tracking, player movement analysis, and court positioning intelligence.

5.1.2 Technical Innovation and Contributions

The system contributes several novel methodological advances to sports computer

vision. The enhanced biphasic architecture demonstrates effective integration of temporal

and spatial analysis approaches with advanced multi-threaded processing. The dual-

YOLO implementation (YOLOv8 for players, YOLOv5 for balls) represents a significant

architectural innovation, while physics-aware ball tracking incorporates parabolic motion

models and bounce detection for superior trajectory analysis.

The enhanced DeepSORT implementation introduces novel court-constrained track-

ing with physics-informed motion models, incorporating geometric constraints and im-

proved appearance descriptors for consistent identity maintenance. The ResNet50-based

court detection with LSTM temporal stabilization represents a significant contribution,

providing unprecedented temporal consistency in keypoint detection and enabling stable
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homography transformation for tactical analysis.

5.1.3 Real-world Application Impact

The integrated system addresses practical needs across multiple tennis analysis do-

mains. Coaching applications benefit from automated shot classification combined with

positioning analysis, enabling detailed technique evaluation and movement pattern as-

sessment. Broadcasting enhancements include real-time graphics generation with syn-

chronized player tracking and shot identification capabilities.

Performance analytics applications leverage comprehensive statistics combining shot

classification with court positioning patterns, while training analysis incorporates move-

ment pattern recognition supporting physical conditioning and tactical development. The

system maintains real-time processing capabilities (30+ FPS) essential for live applica-

tions while achieving accuracy levels suitable for professional deployment.

5.1.4 System Integration Insights

The success of the biphasic approach relies heavily on effective coordination between

parallel processing pipelines. Temporal alignment mechanisms ensure shot classification

labels correspond to correct spatial positioning data through frame-based synchronization

with buffering mechanisms handling processing latency variations.

Data fusion strategies combine heterogeneous information streams while maintaining

real-time performance constraints. The visualization layer successfully integrates tempo-

ral shot labels with spatial tracking data, creating comprehensive tactical representations

exceeding the capabilities of individual component systems.

5.2 Limitations and Future Work

Despite strong overall performance, the system faces limitations under real-world con-

ditions. Accuracy drops occur in ball detection under extreme lighting, player tracking

during close interactions, and court detection with partial views or worn markings. Ama-
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teur courts pose additional challenges due to variable lighting, non-standard backgrounds,

and inconsistent surfaces, reducing generalization compared to professional settings. High

computational demands (2.1 GB GPU, 1.4 GB RAM) restrict deployment on mobile plat-

forms, while reliance on a single camera limits 3D analysis. Training data bias toward

professional conditions and synchronization issues during processing load variations fur-

ther constrain robustness and practical applicability.

Emerging technologies hold significant potential to advance comprehensive tennis

analysis by enhancing both accuracy and applicability. Transformer architectures can

strengthen shot classification through improved long-range temporal modeling, while

Graph Neural Networks enable richer representations of player interactions and tactical

patterns. Reinforcement learning offers opportunities for strategy evaluation and predic-

tion, and generative models can alleviate training data scarcity via synthetic augmenta-

tion, thereby improving robustness. Future development should emphasize optimization

for edge deployment through techniques such as quantization, pruning, and efficient ar-

chitectures, enabling use on mobile and embedded platforms. Multi-camera setups could

provide more robust tracking and enable full 3D analysis, while cloud-based processing

would democratize access and scalability. Broader training datasets covering varied play-

ing conditions will enhance system generalization, and advanced visualization, including

augmented reality integration, can transform coaching and broadcasting. Ultimately, the

incorporation of tactical intelligence systems grounded in game theory, along with ex-

tended temporal profiling for performance optimization and injury prevention, represents

the next frontier in tennis analytics.

5.3 Conclusion

This thesis presents a comprehensive tennis analysis system that integrates temporal

shot classification with spatial object detection and tracking, achieving 89.1% overall ac-

curacy in real time. The biphasic design delivers synergistic capabilities beyond individual

components, with demonstrated applicability in coaching, broadcasting, and performance
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analysis. Technical contributions include tennis-specific optimizations, multi-component

coordination strategies, and real-time architectures that advance sports computer vision.

Evaluations across diverse scenarios validate adaptability while highlighting practical lim-

itations, offering guidance for deployment. The work establishes transferable methodolo-

gies relevant to other racquet and team sports, contributes to both research and practice

in sports analytics, and provides a robust evaluation framework. Future opportunities lie

in advanced AI integration, 3D analysis, and improved environmental robustness, posi-

tioning the system as a strong foundation for continued innovation in automated sports

analysis.
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